Electroinduced oxidative transformation of 2,5-dioxabicyclo[4.4.0]decanes into 5-(1,3-dioxolan-2-yl)- and 5-(dimethoxymethyl)pentanoates

Yuri N. Ogibin,* Alexander O. Terent'ev, Alexey I. Ilovaisky and Gennady I. Nikishin

N. D. Zelinsky Institute of Organic Chemistry, Russsian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: + 7 095 135 5328

Anodic oxidation of 2,5-dioxabicyclo[4.4.0]decane 1a, 1-methoxy-2,5-dioxabicyclo[4.4.0]decane 1b and 1-hydroxy-2,5-dioxabicyclo[4.4.0]decane 1c in methanol in the presence of tetrabutylammonium fluoroborate as a supporting electrolyte induces the electrooxidative transformation of substrates 1a and 1b into methyl 5-(dimethoxymethyl)pentanoate and of substrate 1c into methyl 5-(1,3-dioxolan-2-yl)pentanoate.

Recently, we found the electroinduced oxidative rearrangement of 1,6-dimethoxy-2-oxabicyclo[n.4.0]alkanes into ω -(2-methoxy-tetrahydrofur-2-yl)alkanoates:

This finding provoked us to investigate the behaviour of 2,5-dioxabicyclo[4.4.0]decane **1a**, 1-methoxy-2,5-dioxabicyclo-[4.4.0]decane **1b** and 1-hydroxy-2,5-dioxabicyclo[4.4.0]decane **1c** under similar electrolysis conditions.† In this communication, we report the results obtained by the electrolysis. Methyl 5-(dimethoxymethyl)pentanoate **2** is formed as the main product from bicyclodecanes **1a** and **1b** in 75% yield, and methyl 5-(1,3-dioxolan-2-yl)pentanoate **3** is formed from bicyclodecane **1c** in 90% yield (Scheme 1).

$$X = H$$
 $X = H$
 $X = H$
 $X = H$
 $X = H$
 $X = M$
 $X = H$
 $X = M$
 X

The transformation of 1a-c into esters 2 and 3 resulted from the electrolysis of 1a-c at room temperature in methanol in the presence of tetrabutylammonium fluoroborate as a supporting electrolyte in an undivided cell equipped with a platinum or

Scheme 1

graphite anode and a stainless steel cathode under passages of 2–4 F mol⁻¹ of electricity (Table 1).‡

The structures of esters **2** and **3** were established on the basis of ^{1}H and ^{13}C NMR spectra, $^{\$}$ which contained signals due to dimethoxymethyl (δ_{H} 3.28, 4.31; δ_{C} 52.5, 64.7 and 104.1), methoxycarbonyl (δ_{H} 3.63; δ_{C} 51.3, 173.8) and 1,3-dioxolanyl (δ_{H} 3.87, 4.81) groups, and by comparison of their hydrolysis product with the authentic methyl 6-oxohexanoate. 6

The formation of two types of products from structurally similar starting substrates indicates a difference in the mechanisms of their electrochemical transformations. A rearrangement related to that observed for 1,6-dimethoxy-2-oxabicyclo[n.4.0]alkanes,¹ occurs only in the case of bicyclodecane 1c. The electrolysis of bicyclodecanes 1a and 1b gives ester 2 and is not accompanied by the rearrangement. Ester 2 is formed from substrate 1a through the intermediate formation of bicyclodecane 1b. Scheme 2 illustrates the proposed mechanism for the transformation of substrates 1a-c into esters 2 and 3.

The electrochemical process begins with electron transfer from electrophorus ethylenedioxy fragments of bicyclodecanes 1a–c. It is possible by two routes of further transformation of the resulting radical cations; one route starts with the deprotonation of radical cations and the formation of radicals A (route i), and the other route starts with the cleavage of the bridgehead C–C bond and the formation of distonic radical cation⁸ B (route ii). Similar radical cations also arise from subsequent electrochemical transformations of radicals A. The transformations of radical cations derived from bicyclodecanes 1a and 1b,c follow routes i and ii, respectively. The conversion of distonic ions B (X = OH) electrogenerated from substrate 1c into the final product (ester 3) is accompanied by the deprotonation, rearrangement and decyclization via oxonium ions F.

§ 1-Methoxy-2,5-dioxabicyclo[4.4.0]decane **1b**.³ ¹H NMR (200 MHz, CDCl₃) δ: 1.55–1.80 (m, 8H, CH₂), 3.23 (s, 3H, MeO), 3.30 (m, 1H, CH), 3.46 and 3.82 (m, 4H, OCH₂CH₂O). ¹³C NMR (50 MHz, CDCl₃) δ: 96.4 (O–C–O), 80.8 (CH–O), 64.8, 60.2 (O–C–C–O), 46.9 (MeO), 29.82, 27.96, 24.18, 21.82 (CH₂).

Methyl 5-(dimethoxymethyl)pentanoate **2**.⁶ 1 H NMR (200 MHz, CDCl₃) δ: 1.35 (m, 2H, CH₂), 1.60 (m, 4H, CH₂), 2.30 (t, 2H, CH₂COO), 3.28 (s, 6H, OMe), 3.63 (s, 3H, MeOCO), 4.31 (t, 1H, CHOMe). 13 C NMR (50 MHz, CDCl₃) δ: 178.8 (O=C–O), 104.1 (O–CH–O), 64.7, 52.5, 51.3 (OMe), 33.8, 32.8, 24.6, 24.0 (CH₂).

Methyl 5-(1,3-dioxolan-2-yl)pentanoate **3**.⁷ ¹H NMR (200 MHz, CDCl₃) δ: 1.42–1.63 (m, 6H, CH₂), 2.30 (t, 2H, CH₂COO, *J* 7.5 Hz), 3.63 (s, 3H, MeO), 3.87 (m, 4H, OCH₂CH₂O), 4.81 (t, 1H, OCHO, *J* 4.9 Hz).

¶ The participation of cyclic oxonium ions in the isomerization of linear aliphatic methoxy-substituted carbonium ions was found in ref. 9.

[†] Starting materials. *trans-2,5-Dioxabicyclo*[4.4.0]decane **1a**² was prepared from epoxycyclohexane by the acid-catalysed reaction with 2-chloroethanol followed by the treatment of the resulting 2-(β-chloroethoxy)-cyclohexanol with an alcoholic potassium hydroxide solution (60% overall yield). *1-Methoxy-2,5-dioxabicyclo*[4.4.0]decane **1b**³ was the product of the acid-catalysed addition of methanol to 2,5-dioxabicyclo-[4.4.0]dec-1(6)-ene. ⁴ *1-Hydroxy-2,5-dioxabicyclo*[4.4.0]decane **1c** was synthesised by a known procedure ⁴ from cyclohexanone in 40% yield; ethylene ketal of 2-hydroxycyclohexanone was formed along with **1c** in the same yield.

[‡] Electrolysis of dioxabicycloalkanes **1a–c** (typical procedure). A solution of an electrolyte (9 mmol), compound **1** (5 mmol) and *n*-decane (internal standard, 3 mmol) in MeOH (15–25 ml) was placed in an undivided cell⁵ and then electrolysed at a constant current (0.5 A) and room temperature under intense stirring until more than 90% of **1** was converted. The solvent was removed, the residue was extracted with hexane (2×20 ml), and the combined extracts were concentrated. The products were isolated by vacuum distillation or flash chromathography with hexane–ethyl acetate (1%) as an eluent and then analysed.

$$1a-c \xrightarrow{-e} 1a-c \xrightarrow{|+|} \frac{i (X=H)}{-H^{+}} (CH_{2})_{4} \xrightarrow{O}$$

$$ii X=OMe, OH \qquad A$$

$$-e, MeOH$$

$$A \xrightarrow{-e, MeOH} X=OMe$$

$$-e, MeOH X=OMe$$

$$-H^{+} X$$

A gain in energy as a result of decyclization of the strained 10-membered ring system seems to be a driving force for this process. Distonic ions ${\bf B}$ (X = OMe) derived from substrates ${\bf 1a}$ and ${\bf 1b}$ are likely to be turned to the final product (ester 2) as a result of simultaneously occurring electrooxidation and alcoholysis of radical and cationic centres and by the interaction of cationic intermediates ${\bf D}$ and cyclic ortho ether ${\bf 5}$ with methanol. The protons generated during the electrooxidation of methanol and the alcoholysis of intermediates ${\bf B}$ and ${\bf D}$ are

Table 1 Electroinduced transformation of 2,5-dioxabicyclo[4.4.0]decane **1a**, 1-methoxy-2,5-dioxabicyclo[4.4.0]decane **1b**, and 1-hydroxy-2,5-dioxabicyclo[4.4.0]decane **1c** to methyl 5-(dimethoxymethyl)pentanoate **2** and methyl 5-(1,3-dioxalan-2-yl)pentanoate **3**.

Entry	Bicyclo- alkane	Anode	Q/F mol ⁻¹	Conversion (%)	Product	Yield (%)a
1	1a	Pt	2.0	85	1b + 2	50 + 28
2	1a	Pt	3.0	95	1b + 2a	34 + 44
3	1a	Pt	4.0	100	1b + 2a	23 + 57
4	1b	Pt	2.0	90	2	80
5	1c	C	4.0	100	3	90

^aOn a converted bicyclodecane basis.

a possible catalyst for the reaction of this ortho ether with methanol. The reduction of the protons at a cathode to produce molecular hydrogen does not permit them to be accumulated in the electrolysis products in a concentration sufficient for catalysing the complete conversion of the ortho ether into ester 2. This was supported by the presence of signals typical of protons of the methoxy group ($\delta_{\rm H}$ 3.13) and $^{13}{\rm C}$ nuclei ($\delta_{\rm C}$ 115.5) of the ortho ether group 10 in the NMR spectra of the electrolysis products of 1a.

Thus, the electroinduced oxidative rearrangement of 2-oxaand 2,5-dioxabicycloalkanes is not a general case, and it is typical of only a limited range of compounds of this kind, such as 1,6-dimethoxy-2-oxabicyclo[*n*.4.0]alkanes and 1-hydroxy-2,5dioxabicyclo[4.4.0]decane.

This work was supported by the Russian Foundation for Basic Reseach (grant no. 97-03-33159).

References

- 1 Yu. N. Ogibin, A. O. Terent'ev, A. I. Ilovaisky and G. I. Nikishin, Mendeleev Commun., 1998, 239.
- 2 F. R. Larsen and A. Neese, J. Am. Chem. Soc., 1975, 97, 4345.
- 3 D. Lalandais, C. Baequet and J. Einhorn, *Tetrahedron*, 1981, **37**, 3131.
- 4 I. R. Fjeldskaar, P. Rongved and L. Skattebol, Acta Chem. Scand., 1987, B41, 477.
- 5 Yu. N. Ogibin, A. I. Ilovaisky and G. I. Nikishin, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 1624 (*Russ. Chem. Bull.*, 1994, 43, 1536).
- 6 G. A. Tolstikov, M. S. Miftakhov, F. A. Valeev, R. R. Akhmetvaleev, L. M. Khalilov and A. A. Panasenko, Zh. Org. Khim., 1985, 21, 72 [J. Org. Chem. USSR (Engl. Transl.), 1985, 21, 65].
- 7 T. Nakamura, H. Sawada and M. Nakayma, *Jpn. Kokai Tokyo Koho, Japanese Patent* 02 48.585 (90 48.585), 1991 (*Chem. Abstr.*, 1991, 113, P 41219).
- 8 K. M. Stirk, L. K. Kiminkinen and H. I. Kenttamaa, *Chem. Rev.*, 1992, 92, 1649.
- (a) E. L. Allred and S. Winstein, J. Am. Chem. Soc., 1967, 89, 3991;
 (b) E. L. Allred and S. Winstein, J. Am. Chem. Soc., 1967, 89, 4012.
- (a) P. Deslongchamps, J. Lessard and Y. Nadeau, *Can. J. Chem.*, 1985,
 2485; (b) P. Deslongchamps, J. Lessard and Y. Nadeau, *Can. J. Chem.*, 1985,
 32493.

Received: 12th March 1999; Com. 99/1460